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PLANNING FOR ELECTRIC UTILITY SOLAR APPLICATIONS: THE EFFECTS ON
RELIABILITY AND PRODUCTION COST ESTIMATES OF THE VARIABILITY. IN DEMAND

George R. Fegan

C. David Percival

Solar Energy Research Institute

Golden, Colorado

Abstract - Previous studies have shown the
necessity of the consideration 'of hourly varia-
bilicy in the output from the intermittent gen-
eration source. Yowever, the studies did not
take iato account the variability in the de-
mand. Major questions concerning the variabili-
ties of demand and intermittent source output
are (1) does the demand variability dwarf the
incermittent output variability?; (2) can demand
variapility be handled in the Baleriaux-Booth
framework?; and (3) what effect does the demand
variability have -on the LOLP criterion and the
reserve margin? Before attempting answers to
these questions, the term variability in demand
is clarified by distinguishing between variabil-
ity due to randomness and variability due to
forecasting uncertainty. A result is presented
which shows that under general conditions the
variability due to randomness can be ignored ex—
cept in the neighborhood of the peak and nminimum
demands. The above questions are then addressed
in terms of the two types of variability in de-
rand. .

INTRODUCTION
N EEEE— .
Most of the solar applications for the elec—
tric utilities' generation system are catego-
rized as iatermittent sources; that is, thelr
power output may fluctuate freely from zero to
some maximum during small time intervals. In
two previous papers [1,2], the authors have
claimed that measurements of average output from
internittent sources is inadequate and that the
hourly variability iIn output must be consider-
ed. However, there is some inconsistency in
this positioan if one fails to take i{nto account
the variability in load or demand. In fact the
most often heard objection to our position is
"why should we consider the variability of the
output from the solar devices when 1its effects
are swamped by the variability of demand?”

This comment gets some .theortical support
from ona of the most widely used formulations of
the reliability/production cost problem. The

basic equation for the measure of reliability in
the Balereaux-3ooth formulation is

N ~
pr{(L - I (cap, - 70 }] > o}
: i=l
where

?r = probability

L = load regarded as a random variable

Capi = capacity in MW regarded as the deter-
ministic nameplate rating of the i-th
resource not on maintenance

FO, = force outage in MW of the i-th source
regarded as a random variable

N = the number of sources on the system

Now the conceptualization for the random
variable L 1is wusually done quite poorly as
will be discussed below; the problem in concep—
tualization is usually due to making a transi-
tion from the concept "hours in which a certain
load 1is exceeded” to the concept of probabil-
ity. However, the observation to be made here
is that the load or demand is a random variable;
it  possesses a nonzero variability. To ade-
quately address the variability of the intermit-
tent output, one must have at least an intuitive
handle on the variability in demand.

Once 1t is recognized that this demand vari-
ability must be considered, the question is how
ghall it be treated. Tha nmost common tools used
in the evaluation of reliability and production
costs are the Calabrese LOLP calculation and the
Baleriaux~-Booth framework. It has been demon—
strated (1] that for reliability calculations

" the two methods are equivalent. Therefore we

will give a procedure for the incorporation of
demand variability into - the Baleriaux-Booth
framework. ts handling in Calabrese-type cal-
culations should follow immediately.

Since it 1is most common not to recognize
load variability in the Baleriaux-Booth frame-
work, the LOLP calculations based in the proce-
dure described in this paper are quite different
than those in which the Vvariability is ignored.
We will also txry to establish some relationship
between the LOLP calculation and the reserve
margin as a percent of load in the situation in
which variability ia demand is being considered.

VARIABILITY DUE TO RANDOMNESS VERSUS
VARIABILITY DUE TO ASSI#PTIONS

When one seeks to answer the objection that
the variability in demand dominates amy varia-
bility traceable to the output from the inter-
nittent source, one must be certain as to what
is meant by variability in demand. At one lev
el, the variability reflects the randomness in
demand from excursions due to weather, transito-
ry changes iIn electric ootor usage, ‘and varia-
tions due to entertainment habits. To be speci-
f£i¢ a forecaster makes a prediction for energy
and peak demand for the next year on a month by
month basis. The forecast interval, of course,
could be shorter. If in the realization of that



vear all the assumptions, which the forecaster
made, remain true, the deviation of the actual
demand from the forecast will be govermed by
random events. This deviation we will cazn ran—
dom variablity.

At the next level we have variation due to
assumptions.  We can imagine a forecaster, faced
with uncertainty in the economic sactor, specu~
lating on possible scenarios for the future,
each of which would be weighted by some proba-
bility. His econometric model then will produce
different demand forecasts consistent with the
respective sets of assumptions. The spread of
these foracasts for a given year represeat what
we will call variabilicy due to assumptions or
scenarios.

The answer to our mythical objector then de~
pends upon which variability in demand is In-
tanded. Both levels of wvariability can be
treacted in a Balerlaux~Booth <Zramework but we
will argue that it 1is almost meaningless to
handle the variability due to scenario in this
fashion. Also the question of dominance is not
meaningful if the error distributions of the
forecast remain identical in the random vari-
ability case.

RANDOM VARIABILITY

In order to examine the random_variability

we must look at the very nature of L, the ran-

dom variable representing load in the Baleriaux-
Booth framework. Booth himself leaves this term
{li-cefined:

. The probability discribution of the
load levels experienced by the power systeam
may coaveniently be shown in a load duration
curve as that shown in Fig. 1(a). This
curve rz2lates the loading levels to the per-
centage of the total time that each load
wauld be equalled or axceeded [3].

How we get such a curve is largely
immatarial to this explanation, so here we
have the probablipity distribution (or den-
sity function) for the 1loads we are to
meet [4]. ’

If one looks at the typical method of
creating a load duration curve, one gets an in-
sight into the basis of confusion over the ran-
don variable L. Standard discussiouns recomr
mend that one plot the percent of time load ex-
ceeds a particular load level versus the load
level. The percent of time is then interpreted

as a probability aumber. The problem with this

is that if one is dealing with historical data
and doing calculations over this history, every-
thing i{s deterministic. There doesa't seem to
be any probability questions which can be
answered because history has already happened;
there 4is no uncertainty invoived. The concep~
tual trick when dealing with past history 1s to
imagine one 1{s at an unknown time in history;
the LDC merely recresents the chances of seeing

1800 -

1000 -

loads 1in excess of given values. Therefore,
since one doesn't know the actual load at that
point in history due to the lack of chronologi-
cal data representation in the LDC, one can ask
questions like “"what are the chances of exceed-
ing a load of 1000 MW?" The mistake {3 to re-
gard the LDC as an aggregated history over an
interval; one should pretend that one is stand-
ing at a unknown instant in that time interval
equipped only with information concerning a fre-
quency distribution.

An easier way to conceive of L, the randon
variable for demand or load, is to look at the
problem from the forecasting point of view. Let
us 1lmagine a forecaster being forced to make
hourly forecasts over a given time interval. At
each hour the forecaster gives an estimate of
the 4 (hr) = nean value for the hour. These
mean forecasts give a trajectory for the load
over this 1interval. However, the forecaster

‘understands that as history passes and the time

interval 1s actually realized, there are an in-
finite number of trajectories which could be
realized. What the forecaster hopes for is that
the actual trajectory will lie in a band arocund
his forecasts of the means. Figure 1 gives a
graphical representation of the process.

The Foracast

hc::/d -——— Realized Demand
-] ~.— A Probable but not
A . Realized Trajectory
2000 | =~

Error Bands

Time
Figure 1. Mean Forecast Vs. Possible Trajectories

In reality the utility forecaster usually
gives only a monthly energy and peak forecast
rather than hourly forecasts; the argument is
the same: he 1is estimating the u(= mean) and
there are an infinite number of trajectories
which can be realized.

Turning our attention from the forecast to
past history, one can conceptualize the seenm-
ingly deterministic event in an analogous fash-
ion. If one had made an. hourly forecast of the
demand and the actual demand deviated from the
forecast within reasonable limits and without
systematic patterns, then one could imagine the
forecast as being the mean hourly values for
that year and the actual history as a single
realization. If the year could be played over
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and over agaia, the hourly arithmetic averages
would estimate mean values. In fact a utility
systen which shcwed little growth or change 1in
load proiile from year to year would be in a

sense replaying the year. Variaticns in hourly .

values would be due to random evenzs, one of
which would be weather.

Yow {f one had not made a forecast for the
previous vears, one could use the actual demand
to estimate the nmean values. However, one would
try o correct values which were noticeably out
of bounds, for instance, a demand reaction- to
unusually cold weather. Of course this is what
1s actually done whea one attempts to build a
typical LDC: the utility plananer either cor-
rects for weather or averages normalized shapes
over multi-vears in an attempt to smooth unusual
variations.

BALERTIAUX-BOOTH FORMILATION FOR RANDOM
T VARTABILITY

Before attempting to place random- variabil-
itz into the Baleriaux—Booth coantext, one should
sharpen one's concept of load duration curves
(LDC's). As mentionad earlier the tramsition
frem building an LDC from realized demand values
to a probabilistic interpretation causes sonme
confusion. In Fig. 2 we see how the 8760 hourly
values are normalized to give a probability
scale.

Load
MWe
L
7008 8760
hrs
Probability

10—

R-1V3 o

Load Mw,

Figure 2. (a) LDC as Percent of Time (hours)
{(b) LDC with Time Normalized and Axes
Switched

At the point marked in the (a) figure, it is
correct to say that 80 per cent of the hours ex-
ceeded this value since the LDC represents val-
ues realized. At some point, however, one must
switch one's thinking from realized values to
the estimate of the mean values. Therefore in
the (b) figure it is not correct to say that 80
per unit of the values exceeded the marked
point. Since we are now conceiving of the LDC
as being counstructed of mean values it 1s gquite
possible that no actual values would lie exactly
on the curve; that 1s, the valuas given are ex-
pected values. In this context it is correct to
say that there 1is an 0.80 probability that the
given value will be exceeded; we can also talk
about the expectation that 80 per ceat of the
values will exceed the given one. But to say
that 80 per cent of the values will exceed this
value 1is to conceive of the demand as a deter—
ministic event or as a realized set of values
rather than as the set of means of random vari-
ables. :

It {s the concept that the iandividual hourly
neans do not have to be realized which allows us
to incorporate the variability due to randomness
directly into the Baleriaux—Booth formulatioa.

The way LDC's are presently constructed is
that {if there are a hours in a time interval
each hour receives 1/n for a probability weight.
Demand values ara then ranked and weights accu-
mulateds In the present construction we propose
to. take the hourly forecast of the mean and the
variation and distribute the l/n weight over a
range of values for the hour. These values will
then ©te ranked, weights aggregated, and a LoC
formed. -

To clarifv matters we will use the following
simple example .

" Table I. (a) Hourly Demand Given as
Conventional Averages
(®) Pr [Load > L]

(a) (b)
HR Demand (MW) L (M¥) Pr {Load > L]
1 100 0 1.00
2 150 100 0.50
3 100 150 0.0
h 150

The probability values ia (b) of Table II
are arrived at by weighting those probability
values in (a) of Table II bv the probability of
the hours and summing up the weights for each
value, i.e. for 70 MW we have 0.20 % 1/4 + 0.20
x 1/4 where 1/4 are the weights for hours 1 and
3. The values are then ranked and the probahil-
ities consecutively substracted from l.



Table Il. (a) Actual Forecast Range
(3) Pr [Load >1)

(a) - (b)
HR Demand L Pr
(MW) - Probability (MW) [Load
> L]
130 .20 0 1.00
115 .20 70 0.90
1 u=100 .20 85 0.80
85 .20 100 0.70
70 .20 115 0. 60
170 35 130 0.425
2 u=150 .10 140 0.225
140 .40 150 0.175
130 .13 170 0.0
130 .20
113 .20
3 u=100 : .20
85 .20
70 .20
170 .35
4 us150 .10
140 .40
130 .15

100 © 150

MWg
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Figure 3. (a) LDC for Conventional Forecast
(b) LDC for Forecast with Uncertainty

In Table I we are given a conventional fore~
cast; that 1s, hourly averages without uncer-
tainty information for a four hour period. 1In
Table 1I we are given detailed information con-
cerning the forecast, its range at each hour,
and the probability of realizing the particular
values- in the range.

Table I contains the information of Table II
in aggregated form. Figure 3 gives load dura-
tion curves for the information {n Tzbles I &
II. We wish to note in Table II that we have
chosen the distribution within an hour .in un~
realistic but entirely different manners. For
hours 1 and 3 we -have symmetric uncertaiaty
ranges with a uniform distribution and a mean-
value of u = 100. For. hours 2 and 4 we have an
asymmetric uncertainty range with a mean value
of ¥ = 150, The fact that the distributions are
not identical is extremely important for what {is
done below.

We would like to ecall actentioa to two
things concerning the two Load Duration Curves
(LDC's) of Fig. 3:

(1) the expected enerzy for both LDC's are
equal;

(2) the second LDC is entirely consistent
with the concept of an LDC which we
expounded in the beginning of this section.

The £fact that the expected energies are
equal is immediate on an intuitive level since’
we are merely doing something quite similar to
taking averages of averages. The mathematical
justification is that we are zpplying the dis-
tributive law to

. n
4 i
E[E(forecast, £}, P} = T I X, £,y P
. i=] 3=l -
4 ( ni
t (z x,.¢£,,P)
1al a1 M4

where

E = the expectation

£ = distribution over the forecast
P = distribution over the hour

n; = number of uncertainty points.

In this case we can consider that P equals
1/a identically, where a is the number of hours.

In our earlier discussion we pointed out
that the ordinate values of an LDC should not be
thought of as the percentage of time which the
load was at value L. The interpretation we de-
sire is that there is some chance or probability
that the load will take vt this wvalue. To make
this idea clear let us look at the load value of
70 Mwe. This number comes from the forecast for
hours 1l and 3. The forecaster says that at



those hours that load might occur with 0.20 pro-
bability. However, there is a 0.80 probability
that it will not occur. When looking properly
at the LDC, one rust imagine oneself at some
unknown instant cf ..ee in the &4 hour internal;
that is, he 1is unaware of the specific hour. 1In
2 out of 4 hours he has a2 0.20 probability of

seeing a load of 70 MW,. Therefore it is rot’

correct to say that he will not see 70 Mwe 10
per cent of the time; but it is correct to say
that he has a .10 probability of seeing 70 M.

We have shown that the probabilistic LDC
which is essential to the Balerifaux-Booth frame-
work can handle the random variability in the
forecast. Next we would like to show the effect
of this uncertaincy in demand. Let us continue
the example by assuning genaration plants with
the characteristics given in Table III.

Table IIIl. ASSUNPTIONS OF POWER PLANT CHARAC-

TERISTICS

Nameplate Cap ‘Probability
Machine MW Qutage S/ MWH

I 100. 0.0 - 40

2 50 "~ 0.0 60

We have assumed 0.0 for a forced outage
rate. The Baleriaux-Booth framework has gained
its importance by its ability to handle forced
outage in counnection with load through the con-
volution techunique. However, at this point we
are concentrating on variation in load; any non-
zero forced outage rate will only complicate
matters and obscure the purpose of the example.
Using the values in Fig. 3 and applying economic
dispatch we zet the following costs and relia-
bility maasure ’

Casts for Figaure 3 (a)
L (W)

100 1.0 x 100 MW x $40/4WH x 4 HR = 516000
150 .5 % 50 MW x S60/MWH x 4 HR = 6000

TOTAL COST= $22000

Probability of loss of load = 0.0

Costs for Figmre 3 (&)

Cost =Production costs plus cost of expected
unserved energy

L(MW)

70 1.0 x 70 MW x $40/MWH x 4 HR = §11200
85 .9 x 15 MW x S40/MWJ x 4 HR = 2160
100 .8 x 15 MW x $40/MWH x 4 HR = 1920
115 .7 w13 MW x $60/MWH x 4 HR = 252
130 ‘o6 x 15 MW x S60/MWH x .4 HR = 2160
140 <425 % 10 MW x $60/MWH x & HR = 1020
150 «225 = 10 MW x $60/MWH x 4 HR = 540

TOTAL PRODUCTION COST = $21520

170 Probability of loss of load
= (0.35 x x 2) = 0.175

Expected unserved energy
= 175 x 20 MW x 4 HRS = 14 MWH

We note that the change in plant usage
between Tigures 3(a) and 3 (b)is not just in the
high cost peaking machine (#2); (#1) also gets
less usage because there is some chance that
there will be less than 100 MW of demand. The
case which used demand averages (a) does not
recognize this possibilitv. We also have the
peculiar situation where the costs in (b) are
less than those in (a) btut the reliability meas-
ures are reversed. This i{s explainable 1if ore
considers the extreme: iIf a system is 100 per
cent unrellable there are no incremental fuel
costs. So in (b) by fixing a cost for unserved
energy greater than $60/MWH, one's intuition
concerning reliability and cost is met.

We have shown that both the reliability
and the production costs are dependent upon the
random variability or uncertainty 1in the
forecast, 1i.e., average hourly forecasts give
different results than the range of values over
the hour.

When one considers the position the
authors have developed in previous work (I,2],
one sees the implications of this result. The
standard procedure for - the evaluation of the
worth of a solar .technology is to subtract the
hourly solar output from the hourly demand. The
authors have shown that for wind machines aand
other solar sources, especially those without
storage, there 1s a discrepancy between evalua-
tions basad on hourly inputs and those based on
distributions over the hour. From the example
above it .appears that demand as a function of
the hour and uncertainty in forecast should be
expressed as

D= uy + - (ug + 5

D
where:
D = residual forecasted demand
¥p = mean of the forecast for the
hour

€y = a random variable representing
the range of uncertainty in the

demand

Hg = mean of the output from the
solar source

ES = a random variable representing

the variation in output from the
solar devices.

The dimensions are {n MWh.

1 one were to approximate the range of val-
ues 1in order to handle deviation values for de-



mand for the hour, we would suggest choosing

values for EF, e ES as given below:

ED = to 1 =0,1,2,3

ES = 1/n (Range of values) i-1,2,s ¢ . e,n
us=0

Where 9y is the standard deviation for the
forecast for the hour and n {s some reasonable
number of bins or intervals for the range.

The combinatorics of the situation imply
that we are taking every comblnation of the rea-
sonably discretized forecast with the discre-
tized range of output from the solar source ot
7n cases for each hour. -

The increased computer costs when one
switches from the differance between hourly av—
erage forecast and the hourly average solar out~
put to this combination case are not trivial.
However, the pleasant surprise is that it is not
necessary to do the 7n calculation for each
hour; in most cases one can ignore the random
variation 1in the forecast except at the end-
points of the LDC, the maximum and minimuim de-
mand values. The formal lemma which we prove in
the Appendix states:

Lemma: Let £(x) be a probability den-
sity defined in {a,b]. For each x in
[a +&, b~-¢€], (¢>0), let there be
defined one and only one density g, ()
t ia [x -~ €, x + €] such that x is the
expected value of the distribution de-
fined by 8¢ (1.

b

Define  h(x) = £(x) [ g (x) dr.
a

Tnen h(x) if and only 1if gx(x +2z) = 8y
~ 2{x), for all x and ( z < €). That
is, the probability mass for hn(yx) at
each X in [a + &, b - €] is the same as
that for £(x) 1if there exists a
distribution 8y (t) and all the other

)
84(t) are merely translated copies if
that distribution.

In less formal language and in the case of a
forecast, the. lemma states that {f the forecast
range at each hour is bounded fairly tightly and
if the error distribution is the same at each
point in the forecast, then after one ranks the
forecast values, one can forget about the vari-
ation in the forecast except perhaps at dis-
tances from the endpoints of the forecast which
equal the range of uncertainty. The conclusion
of course depends on the shape of the LDC.

The proof in the Appendix handles the leama
in a more formalistic approach. We would like
to present at this point a more intuitive ex-
ample of the Lemma. Suppose forecasts are being

made at the points n = 1,2,3,4,5,6. Suppose
that the mean of the forecast is the point {t-
self, {.e., at 4, the mean of the forecast is 4.
Further suppose at any interior point the fore-
cast range  only includes the adjacent points.
Also at the endpoints the forecast is the point
itself with probability 0.5 and the adjacent
point with probability 0.5. This informationm is
sunmarized in Table IV. :

If one accumulates the probability masses at
each point one gets the results in Table V.

Trom the example one gets an 1dea of the
smoothing effect the forecast distribution has
oa the interior points. The uncertainty process
begins to smooth out the values so they end up
with the determistic mass of 1.0 and of course
this is -due to the uncertainty process borrowing
mass from a value only to repay it from the un-

. certainty surrounding its neighbors.

Table IV. DATA FOR ZIAM?LE BASED ON LEMMA

Point Forecast Range Probability
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Table V. ACCCMILATION OF PROBABILITY MASSES
IN TABLE 1V

Point : Probability Mass

0.75
1.25
1.0
1.0
1.25
0.75

[ N VIR o O S N

It is obvious that the forecasting procedure
dces not mneet the basic assumptions of the
Lemma:

{l) the range of uncertainty at any
hour 1s unbounded.



(2) the forecast has different stan—
dard deviations (¢'s) according to the
following regime: when one ranks the
forecasts, the extreme values have
larger 0's than the interior values.

(2) £(x) should be interpreted as the

density for the occurrence of demand.
In reality we are dealing with the
product of probability of demand and
the probability of error ia forecast;
that is

b
[ #1) g (x) et .
a .

only if £(t) is a constant do we get
b
£8x) [ g 00 dv .
a

(1) can be ‘justified by forecasting theory.
The standard assumption in forecasting is that
the error of the forecast is normally distrib-
uted. Forgetting that negative forecasts are
neaningless, we are left with a theoretical
range of (—=, «). However, the application of
forecasting lezas heavily on the fact that most
of the probability distribution 1lies within 3
standard deviations of the mean; it is this fact
which precludes worrving about negative fore-
casts. Therefore if one 1is to discretize the
range in a rational manner, one might choose
bounds of (M - 30, u + 30) for the range of
forecast. Since most of the probability mass is
located in that regiom, the approximate range {is
both adequate and bounded.

The second problem 1is that there are "seams™
in the forecast, areas where the distribution of
uncertalaty changes. In the example above we
have seen the effects of changes 1in 0. (see
polnts 1,2,5,6 in Table V). We can justify this
change ia ¢ by examining an LDC. The slope of
the LDC is much greater at the endpolats than at
the interior values. This implies that there is
nora probability of an interior interval occur-
ing than one of the extreme values. The obvious
reason for this 1is that more hours have been
foracasted to 1lie around average demands; the
neighborhoods of the peak demand and, quite pos-
sibly, the wminimum demands reflect very few
hours and have a greater level of uncertainty.
However, the lemma states that one can only dis-
miss the demand variability in the interior if
all the uncertaiaty distributions are identical.
It is our contention that one can make an excel-
lent approximation by assuming constant O except
at the extremes and thereby not worry about the
random variability of the forecast except in the
region around the maximum and minimum values.
The conventional LDC of hourly averages should
only be altered then in small intervals around
the endpoints. The 0's of the peak and minimum
forecasts can be estimated from historical data.
Using our earlier concept of a historical- reali-
zation as a trajectory lying within bands around

the mean value of the forecast, one can estimate
these o's. It is also quite likely that the ¢
for the peak forecast will be greater than that
of the minimum. Some personal observations of
utilizy data have resulted in a guess at the ¢
as being 6 to 9 per cent of the forecast at
these points. We would then suggest an altera-
tion of the LDC only in the neighborhood of 1 ¢
above and below the peak and minimum forecasts
respectively. The assumption is that the g's at
other points are identical.

Finally (3) above implies that distribution
over demand is uniform. That this 1s not so can
be seen from the S shape of the LDC. However,
for wmost LDC's a straight 1line can be fit
through the inflection point of this S curve;
that is, if one disregards intervals around the
maximum and ainimum points the cwmulative
distribucion function for demand can be fit by a
straight line. Therefore this interior section

can be approximated by a uniform distribution
and £(x) can be ramoved from the integral. It

is this section which we wish, to approximate.
The larger the range of adequate fit to the
straight line, the wmore Jjustification we have
for 1ignoring the random variation in demand.
This is a function of the LDC.

The conclusion on the effect of random vari-
ability of the demand is that 1its effects on
cost are minimal but its effect on LOLP can be
quite important. The increased spike in the LDC
due to peak uncertainty can have a major effect.
In relationship to the varibility in the output
of a solar source, the random variability in de-
mand does not dominate the picture. Rather it
is the variation in output which has the major
role since at this time there is not evidence
which suggests that the hourly distributions
over output are identical as would be required’
by the Lenma. If, of course, the § were
shown to be identically distributed, the use of
hourly averages for the output of the solar
source could be justified. Finally the combina-
tions needed to represent both random variation
in the demand and variabilicy in output are re-
duced by the need to examine only the endpoints
of the LDC.

"RESERYE MARGIN VERSUS LOLP

There are two vreliability  criterion used
most frequently in electric utility planning:
per cent reserve marzin and LOLP. Per cent re-
serve wmargin is usually defined as capacity in
excess of a certain percent of the forecasted
peak demand. The LOLP criterion has been used
in this paper and is assumed to be well-known.

Either one of these criteria make an ade-
quate planning goal. In fact many utilities
calculate an _equivalency between ‘the two
criteria, recognizing the fact that the
equivalency is a function of time.

There is a curious phenomenon, however; some
institutions use the per cent reserve margin as
the basis for planning and then make LOLP calcu-



lation separately. The reason usually expressed

_for this is that the per cent reserve margin
takes care of any uatoward contingency where the
LOLP gives the loss of load risk if conditions
happen as expected. The concern being expressed
here may be due to the fear of the uncertainty
in the {forecast. If this uncertainty 1{s re-
stricted to random variability, the alteration
of the LDC at peak to represent this variability
might make the LOLP more palatable as a planning
criterion. This measure would then be respon—
sive to mix and random uncertainty.

VARIABILITY DUE TO ASSIREPTIONS

.The second level of variability in demand is
that due to the basic assumptions upon which the
forecast is made; for what follows let us iden-
tifv this level of uncertainty as scenario vari-
ation.

If we imagine a forecaster using some form
of econometric forecasting tool, we can under-

stand the demand differential as a function of -

the myriad of economic assumptions. We are also
familiar with the current situation of different
forecasts of growth rates thac are filed by ad-
varsaries in various siting cases. These var=-
ious growth rates would .give rise to different
LDC's, different production costs, and different
loss of load risks.

We will show that scenario variation can,

also be nandled in the Baleriaux-Booth framework
by presenting a simplified example.

Table IV.e ASSUZPTIONS FOR EXAMPLE IN VARIATION
DUE TO SCENARIO

Load
(MW) Forced
Scenario Nameplate Outage

Hour #1 #2 #3 Machine Cap (MW) Rate $/MWH

1 100 125 75 1 100 0.0 40
2 150 175 125 2 50 - 0.0 80

Probability for scenarios
0.2 0.5 0.3

We are given three point forecasts with no
uncertainty bounds; each foracast could be as-
sumed to represent a different rate of gzrowth.
Tne LDC's for the three scenarios are so trivial
we will omit chez. Table VII summarizes the
basic statistics.

Table VII. BASIC STATISTICS OF THE THREE

SCENARIOS
Expected Unserved
Energy Cost of Energy

Scénario (MWH) Production LOLP (MWH)

1 250 $§11,000 0.0 0
2 300 $12,500 0.5 25
3 200 $ 8,500 0.0 0

- Expected Values over All Scenarios

Energy = [0.2 (250 MWH) + C.5 (300 MWH) + 0.3
(200 MWH)] = 260 MWH

Cost = 0.2 ($11,000) + 0.5 ($12,500) + 0.3
($8,500) = $11,000 :

LoL? = 0.2 (0) + 0.5 (0.5) + 0.3 (0) = 0.25

Unserved Energy = 0.2 (0 MWH) + 0.5 (25 MWH)
+ 0.3 (0 MWH) = 12.5 MWH

. To show the sihplicitf of the example we
give the calculation of costs for scenario #1:

1.0 x 100 MW = $40/MWH x 2 HRS = § 8,00C

0.5 x 50 MW x S60/MWH x 2 HRS = § 3,000
$11,000

Now if cne regards the three scenarios as
forecasts of the amount of demand and the prob-
ability of demand for each hour, one gets the
following Table.

Table VIII. (a) SCENARIOS TREATED AS FORECASTS
(®) PR [LOAD > L] FOR FORECASTS

(a) -, )

Demand Pr ' )
HR (MW) Probability L (MW) - {Load > L}

75 0.3 0 1.00
3 100 0.2 75 0.85
125 0.5 100 0.75
125 0.3 125 0.35
2 150 0.2 150 0.25°
175 0.5 175 0.0

In the (a) section of Table VIII we have
handled the scenarios just as. we did the fore-
casts earlier, i.e., the values given are the
range for the hour. In the (b) part of the
table we have welghted the probability by the
hourly weignt of 1/2 and formed the values for
the LDC table given below
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Figure 4. LDC for Scenarios Treated as Forecasts

From the LDC and the machine characteristics
we get the following statisties:

ted Energy =

1.0 x 75 MW) + (0.85 x 25 MW)
+ (0,75 x 25 W) + (0.35 x 25
MW) + (0.25 x 25 MW) x 2 HRS
= 260 MWH . .

Expec
(

Cost = x 75 MW = $40/MWH x 2 HRS = $ 6,000
X 25 MW x S40/MWH x 2 HRS = § 1,700
x 25 MW x $60/MWH x 2 HRS = § 2,250
X

0
8
7
3 25 MW x S60/MWH x 2 HRS = $ 1,050

1.
0.
C.
0.

(LN RV

$11,000

LoL? = Q.25

Expected Unserved Energy = 0.25 x 25 MW x 2 4R
= 12.5 MWH

These statistics are as expectad: from the
expected values over the scenariocs one gets the
sane results as taking the distribution over the
demand and calculating the expected values. We
also note that 1if one wanted to take into ac-
count random variability of forecast given a
particular scenario, we would proceed as before.
The Baleriaux-Booth framework handles the use of
sgenarin variability as well as random variabil-
ity. It requires oanly that one view the LDC as
giving probabilities with respect to an instant
of time.

While the Baleriaux-Booth framework handles
scenario variability, it {s questionable whether
there 1s any value in using the technique for
this kind of uncertainty. The expected values
for cost and raliability are pertinent for ran-
dom variation. Given a set of assumptions,
costs and service failure due to randomness are
conditions of iife. They can be considered un-
avoidable risks. However, cosis and risks due
to scenario construction are a different matter.
The iadividual costs and LOLP for each scenario
{s imporrant. The planner Is concerned with the

risks of a planning schedule in the face of de-
mand uncertainties. '~ When one takes evpected:
values over all the scenarios as one does in
treating the scenarios as forecasts, one loses
the individual results from the scenartio. They
become aggregated and smoothed by the
expectation process. For the planner it's quite
{mportanc, as shown 1in our example, that he
realize that he may be facing costs of $12500
and 25 MWH of unserved energy from Scenario #2,
the most probable scenaric. The smoothing that
occurs 1in the respective expected values of
$11000 and 12.5 MWH could be mnisleading
information.

With . regards to the relationship between
variation in the output from the iatermittent
source and that from scenario variation, 1t is
usually stated thac- large differences in rates
of demand growth will dominate if the pentration
of the intermittent sources is small ia compar-
ison .to the growth rates. But this {s basically
a nisleading statement. If one choses to com=
bine all scenarios with appropriate weights as
we have done above, scenario variation domi-
nates. However, 1if the scenarios are placed
individually into the Baleriaux—-Booth framework
then, as was shown in the random variation sec-
tion of this paper, the variation in the inter-
mittent output is the important concept. If one
is interested in evaluating risks in the sce- -
narios, it is important to be concerned about
the variability in output.

CONCLUSIONS

The major result of the paper is that if one
is concerned with a forecast, which has been
ranked or ordered so that chronological order is
lost, random variation in the forecast can be
ignored except in ‘the neighborhood of this end-
points {f the error distributions are identical
at every point in the forecast. If it were true
that output from intermittent sources were iden-
tically distributed and {f one subtracted the
output from the load on an hourly basis and then
ranked the residuals, variation in output could
be ignored. However, it is more reasonable to
assune that the variation iIn output of intermit-
tent sources will be a function of the mean of
the hourly output; and since the meamn will vary
diurnally for most intermittent sources, the
hourly -distributions will not be identical.
Therefore the variation of output must be con-
sidered. The random variation of the forecast
must only bé considered near the peak and mini-
aum demands. However, variation in demand due
to assumptions can have a major effect on costs
and reliability. Uanless one is willing to lose
the individual rvesults from a scenario through
the smoothing effects of expectation, the effect
of output variation should still be considered
on a scenario by scenario basis.

APPENDIX

Lemma: Ler i(x) be a probability density
defined on [a,b]. For each x in {a + ¢, b - €],



(e > 0), let there be defined one and only one
density g, (7), T in [x - €, x + €] such that x
is the expected wvalue of the distribution
defined by g, (t). Define:

b
h(x) = £(x) [ g.(x0) dt
. a

Then h(x) = £(X) if and only 1f gx(x +2) =
gx(})z, for all x and ( z < &). That {s, the
probability mass for h(y) at each x in [a + €, b
- €] 1is the same as that for £(x) 1if there

exists a distribution 3y (t) and all the other

2
gx(t) are werely translated copies of that
distribution.

{Before giving the proof we would like to
make a few clarifications on the assumptions of
the lemma for the continuous case. For each
point in the sublnterval we are defining secon-
dary distributions as {n the case of forecasting
a M and acknowledging an uncertainty around this
4. Therefore at each x, probability mass is be-
ing accumulaced from the densities which have
expected values in the neighbtorhood of x. For
this given x the accumulation has a magnitude of
1 if the secondary densities (error distribu-
tions) are identical except for translation. We
also note that only expected values in the [x =
g, x '+ €] neighvorhood of x can contribute
probability mass to x].

Proof: we first prove the if part.

Since g (7) is a density defined on [x - ¢,
X + €], forall x ia [a + g, b - €]

.gx(r) = 0 ri(x -eg, x +¢€)
x+e
x{s gx(t) ét = 1,

«

Then for all x in {a + &, b - €]

b . X+
h(x) = £(x) [ g (1) dt = £(x) [ g.(x) dr
' a Xwe€

But

gx-z(X) = gx(x+z) for all z such that 0<z€g,

and

gx-z(X) = gy(x+z) for all z such that -£<2¢0 .,

Therefore
: e
n(x) = £(x) [ g (x) dt
X=Z

X+ .
= £(x) [ gx(r)dr a £(x)
x=€

For the only if part we will manufacture a
counterexample, showing that if g_(T) 1is not
identical the result does not hold. %he counter—
example will be for a discrete distribution
without any loss of generality since integrals
and summations could be intarchanged in the
above or alternmatively the integrals could be
interpreted as Riemann=-Stieltjes integrals.

Let £f(n) be a uniform distribution on n =
2,. .,10, that is £(n) & 1/10n=1,2,. ,,10

Let € = 1

Let gn(T) be defined 1in the following
manner: '

forn =1 81 (1) =1

for n = 10 819 (10) = 1

forn=35 gg (4) = 0.1
85 (S) = 0.8
gs (6) = 0.1

for all other n 8p.(n = 1) = 0.25
8n (N) = 0.30
8q (0 + 1) = 0,25
Since € = | cur concern 1s for the points
2,3,%,s «,9. We have defined gn(r) identically
except for n = 5. :
for 2,3,7,8,9
h(x) = £(x)

as can be seen in the calculation of h(2): .

: 3
h(2) = £(2) I g,(2) = £(2) (0.25+0.50+0.25)
1=
. = £(2)
But for 4,53,6 .
a(x) # £(x).
Forn=4
5
h(4) = £(4) T gi(4) a £(4) [.025+0,5+0.1]
{=3
= 0.85 £(4)
6 .
h(5) = £(5) L gi(a) = £(5) ({0.25+0.8+0.25])
i=4 '
= 1.3 £(5)
7
n(6) = £(6) L g (6) = £(6) {0. 1+0. 5+0. 23]
i=3
= 0.85 £(6)

[In intuitive terms it is at the seams, the
points where the distributions differ, that
probability mass starts to accumulate to values
other than 1},
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